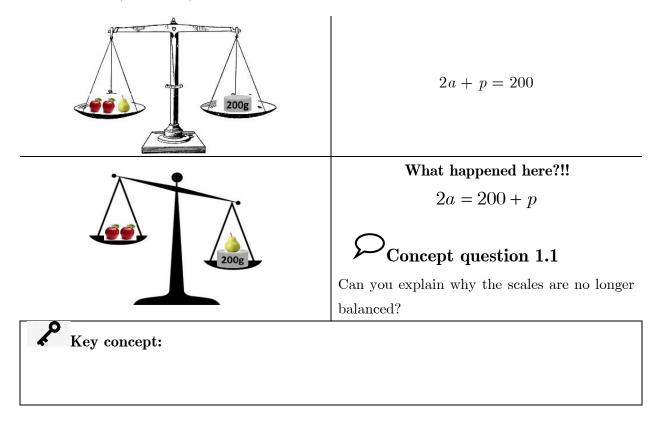

Equality, balancing scales and equivalent equations

An equation says that a pair of quantities are equal. It helps to think of a weighing scales in balance and of both sides of the equations 'weighing' the same amount.

Add 3 to both sides



Double the amount (weight) on both sides

Halve the amount on both sides

Add 50 to both sides $\mathbf{1}$

We must **preserve the equality** thus keep the scales in **balance** at all times. If we **do the same thing** (apply the same operation) **to both sides** of the equation we keep the scales in balance, and create another (equivalent) equation.

\bigcirc Concept question 1.2

Which of the following are equations?

Choose all the options that apply.

$$x^{2} = 2x$$

$$x + 5$$

$$x^{2} - 5x + 6 = 0$$

$$x = 2b$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

\bigcirc Concept question 1.3

If 3m = 5 which of the following are true? Explain why.

Choose all the options that apply.

$$\Box 6m = 10 \qquad \Box 9m^2 = 25$$
$$\Box 3m - 2 = 3 \qquad \Box \sqrt{3m} = \sqrt{5}$$
$$\Box m = \frac{5}{3}$$

Mathematical inverses: operations that undo each other

Operation	Inverse	Example
		a+2=b
Adding		
		a-2=b
Subtracting		
		$5 \times a = b$
Multiplying		
		$\frac{a}{4} = b$
Dividing		4
Dividing		

	-a = b
× (-1)	
	$a^2 = b$
	$a^{-} = b$
Squaring	
	$\sqrt{a} = b$
	ya D
Square root	

Exercise 1.1 Transpose the formulae to make x the subject of the equation.

Equation	Operation	Inverse	Solution
	What is being done to x ?	operation	
2x = 3	× 2	÷ 2	$x = \frac{3}{2}$
x + 2 = 3			
$x^2 = 9$			
$x^2 = 5$			
$x^2 - a = 5$			
$\frac{x}{6} = b$			
$\sqrt{x} = 3$			